D ISCRETE MATHEMATICS

n icholas hayek

Lectures by Prof. Sergey Norin

 $\overline{}$

CONTENTS

© Nicholas Hayek 2024 [Q](mailto:nicholas.hayek@mail.mcgill.ca)

I Definitions

Graph theory is the study of pairwise relations between objects, e.g. computer DEF 1.1 networks, interpersonal relationships, airport flights. Graphs will help us simplify and abstract networks .

We say that an edge *joins* the two vertices it's associated with. Similarly, an edge per 1.3 is *incident* to a vertex which is an end of it. Conversely, a vertex is incident to an edge if it is an end of it.

Two vertices are *adjacent* or *neighbors* if they are joined by an edge, and a vertex DEF 1.4 has *degree* edges incident to it.

The *null graph* is the graph such that $V(G) = \emptyset$. The *complete graph* on *n* vertices, DEF 1.5 denoted K_n , is such that $|V(K_n)| = n$ and $|E(K_n)|$ is maximal.

Suppose every vertex is connected to every other vertex. Then $\sum_{v \in V(G)} \deg(v) = \mathbb{P}_{\text{ROOF.}}$ $n(n-1) \implies |E(G)| = \frac{n(n-1)}{2}$ $\frac{n-1}{2} = \binom{n}{2}.$ \Box

A graph of *n* vertices, where v_i is only adjacent to v_{i-1} and v_{i+1} , is called a *path* definition. and is sometimes denoted P_n . v_1 and v_n are called the ends of P_n .

For
$$
n \ge 3
$$
, a cycle C_n is a graph with $V(G) = \{v_1, ..., v_n\}$ and $E(G) = \{v_1v_2, v_2v_3, ..., v_{n-1}v_n, v_nv_1\}$.

An *adjacency matrix* is a matrix contained all vertices on both axis. Pairwise DEF 1.8 adjacency is denoted by a 1 entry, and 0 otherwise. For example, the following is an adjacency table for a 4 element cycle:

Similarly, an *incidence* matrix has rows in $V(G)$ and columns in $E(G)$, and marks definition with 1 pairs which are incident to eachother. The following is the incidence

matrix for a 4 element cycle:

PROP 1.2 For a graph *G*, we always have \sum deg(*v*) = 2|*E*(*G*)|.

proof.

" $G \setminus H$," since we may delete vertices and keep their incident edges!

 \overline{P}

graphs are there with *n* vertices up to isomorphism?

Every edge has two vertices incident to it. Thus, $\sum deg(v)$ will be the number of times an edge is incident to a vertex, i.e. the number of edges \times 2.

v∈*V* (*G*)

DEF 1.10 *H* is a *subgraph* of *G* if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.

We cannot do the same for For two graphs *G*, *H*, the union $G \cup H$ is a graph such that $V(G \cup H) = V(G) \cup V(G)$ and $E(G \cup H) = E(G) \cup E(H)$. We similarly define the intersection *G* ∩ *H* to be such that $V(G \cap H) = V(G) \cap V(H)$ and $E(G \cap H) = E(G) \cap E(H)$.

PROP 1.3 **1.1.3** There are $2^{\binom{n}{2}}$ graphs with *n* vertices.

For a graph *G,* we always have Σ

PROOF. We know the maximal number of edges of this graph is $\binom{n}{2}$. Then, for each edge, one may make a binary choice whether to include it or not ∴ the number of graphs is $2^{\binom{n}{2}}$. \Box

DEF 1.11 An *isomorphism* between *H* and *G* is a bijection $\varphi : V(G) \to V(H)$ such that We can now ask: how many $uv \in E(G) \implies \varphi(u)\varphi(v) \in E(H)$..

II Connectivity

 \Box

 $(v_0, ..., v_i, v_{j+1}, ..., v_k)$ is a *smaller* walk with ends *u* and *v*, which establishes the contradiction $\frac{1}{2}$.

III Trees and Forests

We'll show by induction on $|E(F)|$. If $n = 0$ then all vertices are their own connected components. Let $|E(F)| = n$, and assume comp $(F) = |V(F)| - |E(F)|$. Let $e \in E(F)$. Since *F* is a forest, *e* is a cut-edge, and thus comp($G \setminus e$) = comp(*G*) + 1 = $|V(F)| - |E(F)| + 1 = |V(F)| - (|E(F)| - 1) = |V(F)| - |E(F \setminus e)| =$ $|V(F \setminus e)| - |E(F \setminus e)|$. \Box

A *leaf* is a vertex with degree 1.

Let *T* be a tree with $|V(T)| \ge 2$. let $X = \{\text{leaves of } T\}$, $Y = \{v \in V(G) : \text{deg}(v) \ge 3\}$. prop 3.2 Then $|X| \ge |Y| + 2$. Thus, trees have ≥ 2 leaves!

By [Prop](#page-3-1) 1.1, we have

$$
\sum_{v \in V(T)} \deg(v) = 2|E(T)|^{-1} \stackrel{1.1}{=} 2(|V(T)| - \text{comp}(G)) \stackrel{1.9}{=} 2(|V(T)| - 1)
$$
\n
$$
\implies \sum_{v \in V(T)} (\deg(v) - 2) = 2(|V(T)| - 1) - 2|V(T)| = -2
$$
\n
$$
= \sum_{v \in X} (\deg(v) - 2) + \sum_{v \in Y} (\deg(v) - 2) + \sum_{v \in V(T) - X - Y} (\deg(v) - 2)
$$
\n
$$
= -|X| \qquad \text{and} \qquad \text{if } |V| \implies |X| \ge |Y| + 2 \qquad \Box
$$

A note for the following few proofs: if w is a leaf, then any path which exists in T (with ends not w) exists in $T \setminus w$ *.*

proof.

IV Spanning Trees

(by [Prop](#page-6-1) 2.6). This is called the *fundamental cycle* of *f* with respect to *T* , and denoted $FC(T, f)$.

Let *T* be a spanning tree of *G*, $f \in E(G) \setminus E(T)$. Let $C = FC(T, f)$, $e \in E(C)$. Then prop 4.3 $(T + f) \setminus \{e\}$ is a spanning tree.

Let $T' = (T + f) \setminus \{e\}$. $T + f$ is connected, and since *e* is not a cut-edge, PROOF. $(T + f) \setminus \{e\} = T'$ is also connected. *C* is a unique cycle in $T + f$, so T' contains no cycles. Thus, *T'* is a tree. $V(T') = V(T) = V(G)$, since *T* is a spanning tree, so we conclude that *T* ′ is a spanning tree. \Box

Let *G* be a non-null, connected tree. Let $w : E(G) \to \mathbb{R}_+$ by a real valued function definition on the edges of *G*. The *minimal spanning tree* of *G* w.r.t. *w*, denoted MST(*G, w*), is a spanning tree *T* such that $w(T) = \sum_{e \in E(T)} w(e)$ is minimal.

4.4 Minimality of MST Edges

Let *G* be connected and non-null. Let $w : E(G) \to \mathbb{R}_+$. Let $T = MST(G, w)$ and $E(T) = \{e_1, ..., e_k\}$, where we order

$$
w(e_1) \le w(e_2) \le \dots \le w(e_k)
$$

Then $\forall 1 \leq i \leq k$, e_i is an edge of minimum weight subject to the following constraints:

• *eⁱ* < {*e*1*, ..., ei*−1}

• {*e*1*, ..., eⁱ* }, as an edge set, does not contain any cycles.

In particular, this theorem states that *for any f* ∈ *E*(*G*)−{*e*1*, ..., ei*−1} with {*e*1*, ..., ei*−1*, f* } not containing cycles, $w(f) > f(e_i)$.

Suppose otherwise. Then for at least one *i*, we can choose $f \in E(G)$ – **PROOF**. {*e*1*, ..., ei*−1} such that {*e*1*, ..., ei*−1*, f* } contains no cycles and *w*(*f*) *< w*(*eⁱ*).

Then $f \notin E(T)$, otherwise $f = e_j$ for some $j \ge i$. But $j < i$, since we have an ordering on *w*. Let $C = FC(T, f)$, the unique cycle in $T + f$. There is some *j* ≥ *i* such that e_j ∈ $E(C)$, since all vertices < *i* must not contain cycles. Then $w(e_j) > w(f)$.

Let $T' = (T + f) - e_j$. Then by <u>[Prop](#page-0-0) 2.9</u>, T' is still a spanning tree. Let $w(G)$ be the sum of weights of edges of *G*. Then $w(T') - w(T) = w(f) - w(e_j) < 0$, implying that *T* is not minimal \oint . \Box

Kruskal's Algorithm $DEF 4.4$

| Input

A connected, non-null graph *G*, and $w : E(G) \to \mathbb{R}_+$

| Output

A graph *T* such that $V(T) = V(T)$, with $E(T) = \{e_1, ..., e_{|V(G)|-1}\}$

$| n \rightarrow n+1$

Let $e_i \in E(G)$ be chosen such that $w(e_i)$ is minimum subject to

- *eⁱ* < {*e*1*, ..., ei*−1}
- {*e*1*, ..., eⁱ* }, as an edge set, does not contain any cycles.

for $1 \le i \le |V(G)| - 1$

4.5 Kruskal's Algorithm Outputs an MST

PROOF. Suppose $w : E(G) \to \mathbb{R}_+$ is injective. Then all edges have different weights. Then Thm 2.1 implies that Kruskal's outputs an MST which is unique. If *w* is not injective, the proof is out of the scope of this course. \Box

4.6 Spanning Trees of *Kⁿ*

The complete graph K^n has exactly n^{n-2} spanning trees.

PROOF. The proof for this will require proving multiple statements. Let T_k be the set of spanning, rooted forests in K^n with k components. Then \mathcal{T}_1 is the set of rooted spanning trees in K_n . Since we may choose *n* roots, $\frac{|T_1|}{n}$ $\frac{\mu_{11}}{n}$ equals the number of spanning trees in K^n . Thus, we need to show $|T_1| = n^{n-1}$.

Claim 1 $|T_n| = 1$

If a spanning, rooted forest has *n* components, then it is exactly the graph of no edges and the vertex set $V(K^n)$ (each being its own component).

Claim 2 *n*(*k* − 1)| T_k | = (*n* − *k* + 1)| T_{k-1} |

Call a forest *F* with $k - 1$ the *parent* of a forest *F'* with k components if *F*^{$′$} = *F* \setminus *e* for some *e* ∈ *E*(*F*). Naturally, we call *F*^{$′$} a *child* of *F* under these conditions. We will thus count (parent, child) combinations. Every $F \in \mathcal{T}_{k-1}$ has $|E(F)|$ children, since every edge is a cutedge. This is $|V(F)| - comp(F) =$ $n - (k - 1) = n - k + 1$ by [Prop](#page-4-1) 2.1.

For every $F' \in \mathcal{T}_k$, we can obtain a parent by adding an edge from any vertex

 \Box

to the root of a component not containing this vertex. Thus, every child has *n*($k - 1$) parents. Thus, there are *n*($k - 1$)| \overline{T}_k | parent-child combinations, and also $(n - k + 1)|T_{k-1}|$ such combinations. Thus, we conclude $n(k - 1)|T_k|$ = $(n - k + 1)|T_{k-1}|$.

Claim 3 $|T_k| = {n \choose k} k n^{n-1-k}$

We just solve the recursion. We'll show by induction on $n - k$. If $n - k = 0 \implies$ $n = k$, we have $|T_n| = {n \choose n} n n^{n-1-n} = 1$, which is true by Claim 1.

Letting $n - k \rightarrow n - k + 1 = n - (k - 1)$, we are having $k \rightarrow k - 1$. By Claim 2, then,

$$
|T_{k-1}| = \frac{n(k-1)}{n-k+1} |T_k| \stackrel{hyp.}{=} \frac{n(k-1)}{n-k+1} {n \choose k} k n^{n-1-k} \stackrel{?}{=} {n \choose k-1} (k-1) n^{n-1-(k-1)}
$$

$$
= \frac{k}{n-k+1} {n \choose k} (k-1) n^{n-1-(k-1)}
$$

Note that $\frac{k}{n-k+1} {n \choose k} = \frac{k n!}{(n-k+1)k!(n-k)!} = \frac{n!}{(k-1)!(n-k+1)!} = \frac{n!}{(k-1)!(n-k+1)!} = {n \choose k-1}$ so the last statement above evaluates to

$$
\binom{n}{k-1}(k-1)n^{n-1-(k-1)}
$$
 as desired.

Claim $4 |T_1| = n^{n-1}$

We plug in from above to find $|T_1| = \frac{n}{1} 1 n^{n-1-1} = n^{n-2+1} = n^{n-1}$.

V Euler's Thm & Hamiltonian Cycles

Recall that a *walk* in *G* is a sequence $(v_0, ..., v_k)$: $v_i \in V(G)$, perhaps with repetition, such that $v_i v_{i+1} \in E(G)$ $\forall i \leq k - 1$. (See Def [1.12\)](#page-0-0).

proof.

Let *C* be Hamiltonian cycle. Then

 $comp(C \setminus X) \geq comp(G \setminus X) > |X|$

Observe now that $C \setminus X$ is a forest. Then, from theory, we know that

comp(*C* \ *X*) = |*V*(*C* \ *X*)| − |*E*(*C* \ *X*)| ≤ |*V*(*C*)| − |*V*(*X*)| − (|*E*(*C*)| − 2|*X*|) = |*X*|

where we note that $|V(C)| = |E(C)|$, since *C* is a cycle. This is a contradiction. \Box

Let *G* be a graph on $n \geq$ vertices. If deg(*u*) + deg(*v*) \geq *n* for every pair of non-adjacent vertices $u, v \in V(G)$, then *G* has a Hamiltonian cycle.

We'll show by induction on $\binom{n}{2} - |E(G)|$. If $|E(G)| = \binom{n}{2}$, then *G* is complete, PROOF. and clearly contains a Hamiltonian cycle.

Let $|E(G)| < \binom{n}{2}$. Let $u, v \in V(G)$ be non-adjacent. Let $G' = G + uv$. By induction hypothesis, ∃ a Hamiltonian cycle *C* ⊆ *G*′ . If *uv* < *E*(*C*), then *C* is a Hamiltonian cycle in *G*. Otherwise, let *uv* ∈ *E*(*C*). Notate

$$
V(C) = \{u = u_1, u_2, ..., u_n = v\}
$$

Let *A* = {*i* : *uu*_{*i*} ∈ *E*(*G*)} and *B* = {*i* : *vu*_{*i*−1} ∈ *E*(*G*)}. Then $|A| + |B|$ = $deg(u) + deg(v) \geq n$.

But we have *n* − 1 such vertices (*u, v* are non-adjacent, so this takes away a possibility). Thus, $A \cap B \neq \emptyset$, so $\exists i : uu_i, vu_{i-1} \in E(G)$. Then

$$
\{u = u_1, ..., u_{i-1}, u_n = v, u_{n-1}, ..., u_i, u_1 = u\}
$$

is a Hamiltonian cycle.

As it turns out, there is no effiicent algorithm to decide if **5.6 Dirac-Pósa G** has a Hamiltonian cycle.

 \Box

PROP 5.7 Let *G* be a graph on $n \ge 3$ vertices. Then if deg(*v*) $\ge \frac{n}{2}$ $\forall v \in V(G)$ OR $|E(G)| \ge$ ${n \choose 2}$ – *n* – 3, then *G* has a Hamiltonian cycle.

PROOF. If $deg(v) \geq \frac{n}{2} \forall v \in V(G)$, then $deg(u) + deg(v) \geq n \forall u, v \in V(G)$, so by <u>[Thm](#page-0-0)</u> [2.5](#page-0-0) *G* has a Hamiltonian cycle.

> For the second condition, I was getting a cookie and didn't listen. \Box

VI Bipartite Graphs

(1 \implies 2). Let (*A*, *B*) be a bipartition of *G*. Let (*v*₀, ..., *v*_{*k*}) be a walk in *G*. wLOG let *v*⁰ ∈ *A*. Then *v*^{*i*} ∈ *A* \iff *i* is even. Thus, if *v*⁰ = *v*^{*k*}, *k* must be even, so the walk must have even length.

(2 =⇒ 3)If *G* had a cycle of odd length, it would be a closed walk of odd length.

 $(3 \implies 1)$. As bipartitions of components may be combined to form a larger bipartition, it suffices to show this for a connected, non-null graph.

Let *T* be a spanning tree of *G*. Then \exists a bipartition (A, B) of $V(T)$ by [Prop](#page-0-0) [2.15.](#page-0-0) We'll show this is a bipartition of *G* as well. Let $f \in E(G) - E(T)$. Let v_0 , ..., v_k be the vertices of FC(*T*, *f*), with ends on *f*. Assume WLOG that $v_0 \in A$.

The fundamental cycle $FC(T, f)$ has even length by assumption, so v_k must be odd (observe the cycle v_0 , v_1 , v_2 , v_3 for reference). Thus, $v_k \in B$, so *f* has one end in *A*, and one in *B*. This may be reasoned for all f ∈ $E(G) - E(T)$. The bipartition holds for $E(T)$. Thus, it holds for all $e \in E(G)$. \Box

VII Matchings in Bipartite Graphs

Immediately from [Prop](#page-0-0) 2.17. \Box $deg(v) \ge E(G) = \frac{1}{2}$ If *X* is a vertex cover of *G*, then Σ **PROP 7.4** If X is a vertex cover of G, then $\sum deg(v) \ge E(G) = \frac{1}{2} \sum deg(v)$. *v*∈*X v*∈*V* (*G*) prop 7.5 If *G* is a graph, and *Y* is a set of pairwise non-adjacent vertices, then $V(G) \setminus Y$ is a vertex cover. **PROOF.** Suppose otherwise. Then $\exists uv \in E(G)$ such that uv is not incident to any $V(G) \setminus Y$. Thus, $u, v \in Y$. But then u, v are adjacent. \Box *Note that the previous two propositions were not shown in class, but I have high confidence they're true, and they might be useful; take them with a grain of salt.* PROP 7.6 For a graph *G*, $\nu(G) \leq \tau(G) \leq 2\nu(G)$. It remains to show that $\tau(G) \leq 2\nu(G)$. Let *M* be a matching with $|M| = \nu(G)$. proof. We want to find a vertex cover *X* with $|X| \le 2|M|$. Let *X* be the set of ends of edges of *M*. Then $|X| = 2|M|$. Furthermore, *X* is a vertex cover. Otherwise, $\exists e \in E(G)$ with no end in *X*. Then $M \cup \{e\}$ is a matching, violating maximality. \Box DEF 7.5 Let *M* be a matching in *G*. A path $P \subseteq G$ is *M*-alternating if edges in *P* alternate between edges of *M* and $E(G) - M$, i.e. every internal vertex of *P* is incident to an edge in $E(P) \cap M$. DEF 7.6 An *M*-alternating path $P \subseteq G$ is *M*-augmenting if $|V(P)| \ge 2$ and the ends of *P* are not incident to edges of *M*. prop 7.7 If *G* contains an *M*-augmenting path, then *M* is not maximum. **PROOF.** Let *P* be *M*-augmenting. Let *P* = *n*. Then $E(P) \cap M = \frac{n-1}{2}$. We may choose a matching $M' = E(P) - (E(P) \cap M)$. Then $E(P) \cap M' = \frac{n+1}{2}$. Then $M' \cup [(E(G) E(P)$) ∩ *M*], i.e. *M'* with the edges of *M* not in *P*, is a larger matching. \Box M *M M M M* M' *M′ M′ M′ M′ M′*

proof.

It suffices to show *τ*(*G*) ≤ *ν*(*G*). Thus, given a matching *M* with *ν*(*G*) = |*M*|, we look for a vertex cover $X : |X| = |M|$.

Let (*A*, *B*) be a bipartition of *G*. Let *A'*, *B'* be vertices not incident to edges in *M* in *A* and *B*, respectively:

Let *Z* ⊆ *V*(*G*) be such that for all $z \in Z$, ∃ an *M*-alternating path in *G* with one end in \overline{v} and another in A' . Then we can conclude the following:

- 1. $A' \subseteq Z$.
- 2. *Z* ∩ *B'* = \emptyset (i.e. \nexists an *M*-augmenting path).
- 3. Every edge in *M* with one end in *Z* has both ends in *Z*.
- 4. Every edge with one end in $Z \cap A$ has a second end in $Z \cap B$.

Thus, let *X* = $(Z \cap B) \cup (A \setminus Z)$. Then $|X| \ge |M|$, since every vertex of *X* is incident to an edge of *M* (see (1) and (2)). Every edge of *M* has exactly one end in *X*, so $|M| \ge |X|$, and then $|X| = |M|$. Lastly, *X* is a vertex cover, by (4). \Box

We say that a matching *M* covers $X \subseteq V(G)$ if every vertex in X is an end of some DEF 7.7 edge in *M*.

We say that a matching is *perfect* if it covers $V(G)$. $DEF 7.8$

A matching *M* is perfect $\iff |M| = \frac{|V(G)|}{2}$ 2

A graph *G* is *d*-*regular* if $deg(v) = d \forall v \in V(G)$. DEF 7.9

7.10 Criterion for Perfect Matchings

Let *G* be a *d*-regular bipartite graph for $d \ge 1$. Then *G* has a perfect matching.

proof. If a bipartite graph *G* contains a perfect matching, then for a bipartition $(A, B), |A| = |B|.$

 $d|B| = |E(G)| = d|A|$, so $|A| = |B|$, since every edge has exactly one end in *A* and

. prop 7.9

one end in *B*. We wish to show that $v(G) \ge |A| = |B|$, since clearly $v(G) \ge |A|$. By König, it suffices to show that $τ(G) ≥ |A|$, i.e. for every vertex cover *X* of *G*, $|X|$ ≥ $|A|$.

As *X* is a vertex cover, we have

$$
d|X| = \sum_{x \in X} deg(v) \ge E(G)d|A| \implies |X| \ge |A| \quad \Box
$$

DEF 7.10 Let $N(S)$ denote the set of all vertices in *G* with at least one neighbor in $S \subseteq$ $V(G)$.

7.11 Hall

Let *G* be a bipartite graph with a bipartition (*A, B*). Then *G* has a matching *M* covering *A* if an only if

$$
|N(S)| \ge |S| \,\forall S \subseteq A
$$

Sometimes we call the qualifier "Hall's condition."

proof.

 (\implies) If *M* is a matching which covers *A*, then *M* matches every vertex of *S* ⊆ *A* to a vertex in *N*(*S*). Thus $|N(S)| \ge |S|$.

 (\Leftarrow) We want to show that $\nu(G) \ge |A|$, since automatically $\nu(G) \le |A|$. By König, it suffices to show $\tau(A) \ge |A|$, i.e. $|X| \ge |A|$ for any vertex cover *X*.

⊆*B*∩*X* Let *S* = *A* − *X*. By Hall's condition, $|B \cap X| \ge |N(S)| \ge |S|$ = $|A - X|$. Thus, $|A \cap X| - |B \cap X| \ge |A \cap X| - |A - X| \implies |X| \ge |A|.$ \Box

VIII Menger's Theorem & Separations

Let *G* be a graph, and let *s*, $t \in V(G)$. We wish to consider when there exists a path in *G* with ends *s* and *t*. If such a path does not exist, then we can conclude that *s* and *t* are members of different components. Abstractly, there exists a partition (A, B) of $V(G)$, where $s \in A$, $t \in B$, such that no edge of *G* has one end in *A* and another in *B*.

Let *s*, *t* be non-adjacent, and suppose there exists at least one path between them. How might we guarantee that *s* cannot be "disconnected" from *t* by deleting *X* ⊆ *V*(*G*) with $|X|$ < *k*, *s*, *t* ∉ *X*? The existence of disjoint paths P_1 *, ...,* P_k from *s* to *t* would suffice.

DEF 8.1 A *separation* of *G* is a pair (A, B) such that $A ∪ B = V(G)$ and no edge of *G* has one end in $A - B$ and the other in $B - A$.

The *order* of a separation (A, B) is $|A \cap B|$. DEF 8.2

Let $s, t \in V(G)$. Then either there exists a path with ends *s* and *t* in *G*, or there prop 8.1 exists a separation of *G* with $s \in A$, $t \in B$ of order 0.

This will follow from [Thm](#page-0-0) 2.10, with $k = 1$.

8.2 Menger

Let *s*, *t* ∈ *V*(*G*) be distinct and non-adjacent. Let $k \ge 1$. Then exactly one of the following holds:

- 1. There exists pairwise disjoint paths P_1 , ..., P_k with ends *s* and *t*.
- 2. There exists a separation (A, B) of *G* with order $\lt k$ such that $s \in$ $A - B$, $t \in B - A$.

If (A, B) is a separation as in (2), then every path *P* from *s* to *t* contains a proof. vertex in *A*∩*B*. Thus, if (1) holds, then P_1 , ..., P_k use *k* distinct vertices in *A*∩*B*, contradicting $|A \cap B| < k$. Thus, (1) and (2) are at least mutually exclusive.

We will assume [Thm](#page-0-0) 2.11 holds, and conclude that Menger holds.

Let *Q* be the set of neighbors of *s* and *R* be the set of neighbors of *t*. Then either (1) or (2) of the theorem below holds, applied to $G \setminus s \setminus t$.

Suppose (1) of 2.11 holds. Then adding *s* and *t* to the ends of each disjoint path, we get that (1) of Menger holds. Suppose (2) of 2.11 holds. Then a separation $(A \cup \{s\}, B \cup \{t\})$ satisfies (2) of Menger. \Box

8.3 Generalized Menger

Let *Q*, *R* ⊆ *V*(*G*). Let *k* ≥ 1. Then exactly one of the following holds:

- 1. There exists pairwise disjoint paths *P*1*, ..., P^k* , each from *Q* to *R*.
- 2. There exists a separation (A, B) of G of order $\lt k$ such that $Q \subseteq A$ and $R \subseteq B$.

For $X \subseteq V(G)$, let $V[X]$, the *subgraph of G induced by X*, have the vertices of *X* DEF 8.3 and the edges of *G* with both ends in *X*.

exercise caution

PROOF. We only need to show that one of (1), (2) hold. By induction on $|V(G)| + |E(G)|$.

 $|V(G)| + |E(G)| = 0 \implies G = \emptyset$. We have the order 0 separation (\emptyset, \emptyset) .

Case 1: There exists a separation (A', B') of order exactly *k* s.t. $Q \subseteq A', R \subseteq B'$, and A' , $B' \neq V(G)$. By induction hypothesis applied to $G[A']$, Q, and $A' \cap B'$, either

- 1. ∃ P_1' P'_k , ..., P'_k in $G[A']$ from Q to $A' \cap B'$, pairwise disjoint.
- 2. \exists a separation (*A''*, *B''*) of *G*[*A'*] such that $Q \subseteq A''$ and $A' \cap B' \subseteq B''$ of order *< k*.

Then $(A'', B' \cup B'')$ is a separation of *G* satisfying (2): observe that $Q \subseteq A''$ by definition, and $R \subseteq B' \cup B''$, since $R \subseteq B'$. Furthermore,

$$
|A'' \cap (B' \cup B'')| = |(\underbrace{A''} \cap \underbrace{B'}_{\subseteq A'} \cup (A'' \cap B'')| = |A'' \cap B''| < k
$$

Similarly, by applying the induction hypothesis to $G[B']$, $A' \cap B'$, R , we may assume there exists pairwise disjoint paths P_1'' $P''_1, ..., P''_k$ from $A' \cap B'$ to *R*. By renumbering, we may assume that P'_i P_i' and P_i' $B_i^{\prime\prime}$ share an end in $A' \cap B'$, and then paths $P'_1 \cup P''_1$ *n''*, ..., *P_k***' ∪** *P_k***''** \mathcal{C}'_k satisfy (1).

Case 2: $Q \cap R \neq \emptyset$. Let $v \in Q \cap R$. We apply induction hypothesis to *G* − *v*, *R* − *v*, *Q* − *v*, and *k* − 1. If (1) holds in *G* − *v*, then adding a path P_k with $V(P_k) = \{v\}$, we get *k* paths in *G*.

If (2) holds in *G*−*v*, then let (*A'*, *B'*) be a separation with Q −*v* ⊆ *A'*, R −*v* ⊆ *B'*. Then (2) holds for *G* with the separation

$$
(A, B) = (A' \cup v, B' \cup v)
$$

Case 3: $k = 1$. If there exists a component *C* of *G* such that $V(C) \cap Q \neq \emptyset$, *V*(*C*) ∩ *R* $\neq \emptyset$, then (1) holds.

Otherwise, let *A* be the union of vertex sets of components that contain a vertex of *Q*. Let $B = V(G) - A$. Then (A, B) is a separation of order 0.

Case 4: Cases 1, 2, 3 do not hold. Let $e \in E(G)$. Apply induction hypothesis to $G \setminus Q$, R. We may assume that there exists a separation (A', B') of $G \setminus e$ with *Q* ⊆ *A*', *R* ⊆ *B*'. WLOG *e* has ends in *u* ∈ *A'* − *B*['] and *v* ∈ *B'* − *A'* (otherwise, we are done).

Consider a separation $(A', B' \cup u)$. If it has order $\lt k$, then we are done.

If it has order = *k*, then Case 1 holds, unless $B' \cup u = V(G)$. Similarly, considering $(A' \cup v, B')$, we may assume $A' \cup v = V(G)$. So $|V(G)| \leq |A \cap B| + 2 \leq$ $k + 2$. Then $|Q| + |R| = |V(G)|$, since Case 2 doesn't hold. So we may assume $|Q| \leq \frac{k+1}{2} < k$. Then, $(Q, V(G))$ is a separation that satisfies (2). \Box

Menger [\(Thm](#page-0-0) 2.11) \implies König (Thm 2.7) prop 8.4

Let *G* be a bipartite graph with a bipartition (*Q, R*). Let $k = \nu(G) + 1$. Then (1) PROOF. of Menger doesn't hold, since this would imply the existence of a matching of size *k*. Thus, \exists a separation (A, B) of *G* of order $\leq \nu(G)$ such that $Q \subseteq A$, $R \subseteq B$. Then *A* \cap *B* is a vertex cover, so $\tau(G) \leq \nu(G)$. (Recall, by [Prop](#page-0-0) 2.18, that we only need to show this direction.) \Box

Let $k \ge 1$ and let *G* be a graph with $|V(G)| \ge k + 1$. We say that *G* is *k*-connected DEF 8.4 if *G* \ *X* is connected for all *X* ⊆ *V*(*G*) such that $|X|$ ≤ *k* − 1.

♠ *Examples* ♣ ^e.g. 8.1

G is 1-connected \iff *G* is connected and $V(G) \ge 2$. Trees on ≥ 2 vertices are 1-connected, but not 2-connected. Cycles are 2-connected, but not 3 connected.

8.5 Paths in *k*-Connected Graphs

Let *G* be a *k*-connected graph. Let *s*, $t \in V(G)$. Then there exists paths *P*1*, ..., P^k* in *G*, each with ends *s* and *t*, and otherwise pairwise disjoint.

Recall Menger's [\(Thm](#page-0-0) 2.10): if $s, t \in V(G)$ are non-adjacent, then either \exists PROOF. paths as described above, or ∃ a separation (A, B) with $s \in A, t \in B$, and $|A ∩ B|$ < k. However, then $G \setminus (A ∩ B)$ is no longer connected. But *G* is *k*-connected, so we have a contradiction. Hence, such a separation can't exist, and so the path case holds.

Now suppose that *s, t* are adjacent. We get $P_k := st$ (the edge connecting them) for free. We'll apply Menger's to *G* \ *st*, i.e. $\exists P_1, ..., P_{k-1}$ from *s* ↔ *t*, pairwise non-adjacent, or ∃ a separation of *G* \ *st* with $|A \cap B|$ < $k - 1$. Then *G* \ ((*A* ∩ *B*) ∪ {*s*}) is disconnected (unless *A* − *B* = *s*). Similarly, we find that $B - A = t$ as well. But then $|V(G)| \le |A \cap B| + 2 \le k$. This also violates *k*-connectivity (in particular, the condition that $|V(G)| \geq k + 1$). Thus, *P*₁*, ..., P*_{*k*−1}*, P*_{*k*} are paths from *s* ↔ *t*. Note that *P*^{*i*} ∈ *G* \ *st* for *i* ≤ *k* − 1, so since $P_k = st$, these are all disjoint. \Box

DEF 8.5 The *cut* associated with $X \subseteq V(G)$, denoted by $\delta(X)$, is the set of edges of *G* with exactly one end in *X*.

DEF 8.6 For a graph *G*, the *line graph*, denoted $L(G)$, is a graph such that $V(L(G)) = E(G)$, and $e, f \in V(L(G))$ adjacent in $V(L(G))$ if and only if they share an end in *G*.

8.6 Edge Menger

Let *s*, *t* ∈ *V*(*G*) be non-adjacent. Then either ∃ edge-disjoint paths P_1 , ..., P_k or $\exists X \subseteq V(G)$ with $s \in X$, $t \notin X$, and $|\delta(X)| < k$.

Note that (1) and (2) cannot both hold. Suppose (1) holds. Consider a path *Pⁱ* from *s* to *t*. Let $s \in X$ and $t \notin X$. Let v_i be the minimal vertex not in X. Then *v*_{*l*−1}*v*_{*l*} ∈ *δ*(*X*). Since *P*^{*i*} are all pairwise disjoint, we have at least $|δ(X)| ≥ k$, which is a contradiction.

Thus, we need to show that either (1) or (2) holds. Let $G' = L(G)$. Let $Q \subseteq V(G') = E(G)$ be the set of all edges with an end being *s*. Similarly, let $R \subseteq V(G')$ be the set of edges with an end being *t*. By [Thm](#page-0-0) 2.11, we first consider the possibility that ∃ vertex disjoint paths *P* ′ $P'_1, ..., P'_k \subseteq G'$ with ends in *Q* and *R*.

Then $V(P'_i)$ *i*^{\prime}) contains $E(P_i)$ for some path P_i from $s \leftrightarrow t$, so in particular we have an edge-disjoint path in *G* from $s \leftrightarrow t$.

Suppose now that the second condition in [Thm](#page-0-0) 2.11 holds, i.e. ∃ a separation (A, B) of *G*' with $Q ⊆ A, R ⊆ B, |A ∩ B| < k$, and $\overline{A} ∪ B = V(G') = E(G)$. No edge in *A* − *B* shares an end with an edge in *B* − *A*. Let *X* be the vertices $v \in V(G) \setminus \{t\}$ such that all edges incident to *v* are in *A*. Then $s \in X$, $t \notin X$, and for all $v \notin X$, we have that the edges incident to v are in B . Hence, $\delta(X) \subseteq A \cap B$, so $|\delta(X)| < k$ as desired. \Box

IX Directed Graphs & Flows

A *directed graph*, or *digraph*, *D* is a graph where, for each edge $e \in E(D)$, one of DEF 9.1 its ends is designated *tail*, and one end is designated *head*. Then, *e* is said to be *directed* from its tail to its head.

A *directed path P* from *u* to *v* in a digraph *D* is a path from *u* to *v* in which, for DEF 9.2 every $v_{i-2}v_{i-1}$, $v_iv_{i+1} \in E(P)$, v_{i-1} is a head, and v_i is a tail.

For a digraph *D* and $X \subseteq V(D)$, $\delta^+(X)$ denotes the vertices in $\delta(X)$ with its tail DEF 9.3 in *X*. Similarly, $\delta^{-}(X)$ denotes the vertices in $\delta(X)$ with its head in *X*. Note that $\delta^{+}(X) = \delta^{-}(V(G) - X)$, and similarly $\delta^{-}(X) = \delta^{+}(V(G) - X)$.

Let *D* be a digraph, and *s*, $t \in V(D)$. Then \neq a directed path in *D* from $s \to t \iff$ prop 9.1 $\exists X \subseteq V(G) \text{ s.t. } s \in X, t \notin X \text{, and } \delta^+(X) = \emptyset.$

proof. (\leftarrow) Suppose there existed a directed path *P* ⊆ *D* from *s* \rightarrow *t*. Consider the last vertex $v \in V(P)$ s.t. $v \in X$. Then the edge of the path with a tail in *v* is in $\delta^+(X)$. Hence, $\delta^+(X) \neq \emptyset \implies \oint$.

(\implies) Let *X* be all *v* ∈ *V*(*D*) s.t. ∃ a directed path from *s* to *v*. Then *s* ∈ *X*, *t* ∉ *X* by assumption. If $vw \in \delta^{+}(X)$ for some $w \notin X$, then we may construct a directed path consisting of the path $s \rightarrow v$, and stitching on this edge to *w*. Hence $w \in X \implies \frac{1}{2}$. Hence $\delta^+(X) = \emptyset$. \Box

Consider the following directed paths from *s* to *t*:

Typically, we call *s* the "source" and *t* the "sink." Let $\delta^+(v)$ for $v \in V(D)$ denote all edges whose tail is v . We then define flow in the following way:

DEF 9.4 An (*s, t*)−*flow* on a digraph *D* is a function $\varphi : E(D) \to \mathbb{R}_+$ such that

$$
\sum_{e \in \delta^+(v)} \varphi(e) = \sum_{e \in \delta^-(v)} \varphi(e) \quad \forall v \in V(D) - \{s, t\}
$$

where *s* is the source and *t* is the sink.

The *value* of an (s, t) -flow φ is Σ $e \in \delta^+(s)$ $\varphi(s)$ − \sum $e \in \overline{\delta^{-}}(s)$ DEF 9.5 *DEF 9.5 DEF 9.5* $\phi(e)$ *. The value of an (s, t)-flow* ϕ *is* $\sum \phi(s) - \sum \phi(e)$ *.*

PROP 9.2 Let φ be an (s, t) -flow on a digraph *D* with value *k*. Then $\forall X \subseteq V(D)$ such that $s \in X$ *,* $t \notin X$ *, we have*

$$
\sum_{e \in \delta^+(X)} \varphi(e) - \sum_{e \in \delta^-(X)} \varphi(e) = k
$$

proof.

By flow conservation,

$$
k = \sum_{e \in \delta^+(s)} \varphi(s) - \sum_{e \in \delta^-(s)} \varphi(e)
$$

=
$$
\sum_{v \in X} \left(\sum_{e \in \delta^+(v)} \varphi(e) - \sum_{e \in \delta^-(v)} \varphi(e) \right)
$$

of $v \neq s$
=
$$
\sum_{e \in E(D)} \varphi(e) (t(e) - h(e)) = \left(\sum_{e \in E(D)} \varphi(e) t(e) \right) - \left(\sum_{e \in E(D)} \varphi(e) h(e) \right)
$$

=
$$
\sum_{e \in \delta^+(X)} \varphi(e) - \sum_{e \in \delta^-(X)} \varphi(e)
$$

Where

$$
t(e) = \begin{cases} 1 & \text{tail of } e \text{ in } X \\ 0 & \text{o.w.} \end{cases} \qquad h(e) = \begin{cases} 1 & \text{head of } e \text{ in } X \\ 0 & \text{o.w.} \end{cases}
$$

What is the maximal value of an (*s, t*)-flow? The answer is uninteresting: if there exists a path from $s \rightarrow t$, we can assign any amount of flow to each of these edges, and 0 otherwise, and maintain conservation. Hence, if there exists such a path, we may have ∞ flow. If a path does *not* exist, then we invoke [Prop](#page-0-0) 2.26, which says $\delta^+(X) = \emptyset$ for any $X \subseteq V(G)$, $s \in X$, $t \notin X$, to conclude that $k = -\sum_{e \in \delta^-(X)} \varphi(e)$. Since φ is non-negative, *k* is negative, and at most 0 (take $\varphi \equiv 0$).

A *capacity function* on a digraph *D* is a function $c : E(D) \to \mathbb{Z}_+$. An (s, t) -flow φ is per 9.6 *c*-*admissible* if φ (*e*) ≤ *c*(*e*) \forall *e* ∈ *E*(*D*).

A (not necessarily directed) path $P \subseteq D$ from $s \leftrightarrow t$ is φ -*augmenting* path for an definition- (s, t) -flow $\varphi : E(D) \to \mathbb{Z}_+$ if:

- 1. φ (*e*) ≤ *c*(*e*) − 1 if *e* ∈ *E*(*D*) from tail to head.
- 2. $\varphi(e) \geq 1$ if $e \in E(P)$ from head to tail.

 φ is called *integral* if its co-domain is the integers. DEF 9.8

Let φ be an integral *c*-admissible (*s, t*)-flow of value *k*. If \exists a φ -augmenting path prop 9.3 *D* from *s* \leftrightarrow *t*, then ∃ a *c*-admissible (*s*, *t*)-flow in *D* of value *k* + 1.

 ψ is an (*s, t*) *pseudo-flow* if it satisfies flow conservation (but not necessarily non- DEF 9.9 negativity).

proof.

 \Box

$$
\psi(e) = \begin{cases}\n1 & e \in E(P) \text{ is head to tail} \\
-1 & e \in E(P) \text{ is tail to head} \\
0 & e \notin E(P)\n\end{cases}
$$

Then let $\varphi' = \varphi + \psi$. ψ is then a "pseudo-flow," since ψ satisfies flow conservation. φ' is also a pseudo-flow. But $\varphi' \ge 0$, since, if $\psi(e) = -1$, then $\varphi(e) \ge 0$, so $\varphi'(e) \ge 0$. φ' is also *c*-admissible, since, if $\psi(e) = 1$, then $\varphi(e) + 1 \le c(e)$, so $\varphi'(e) = \varphi(e) + 1 \leq c(e).$

Also, the value the φ' is the value of ψ + the value of $\varphi \implies$ the value of φ' is $k + 1$. \Box

9.4 Max Flow-Min Cut (or Ford-Fulkerson)

Let *D* be digraph, *s*, $t \in V(D)$ distinct. Let $c : E(D) \rightarrow \mathbb{Z}_+$. Then the maximal value of an integral *c*-admissible (*s, t*)-flow is equal to the minimum *∑ c*(*e*), over all *X* ⊆ *V*(*D*), *s* ∈ *X*, *t* ∉ *X*. $e \in \overline{\delta^+}(X)$

PROOF. Let $\varphi : E(D) \to \mathbb{R}_+$ be a *c*-admissible (s, t) -flow of maximum value, *k*. Let *X* ⊆ *V*(*D*) be such that *s* ∈ *X*, *t* ∉ *X*. By [Prop](#page-0-0) 2.27,

$$
k = \sum_{e \in \delta^+(X)} \varphi(e) - \sum_{e \in \delta^{-1}(X)} \varphi(e) \le \sum_{e \in \delta^+(X)} \varphi(e) \le \sum_{e \in \delta^+(X)} c(e)
$$

Now let *X* be the set of $v \in V(D)$ such that there exists a φ -augmenting path in *D* from *s* \leftrightarrow *v* (recall: not necessarily directed). Then *s* ∈ *X* and *t* ∉ *X*, since, if $t \in X$, then our (s, t) -flow is not maximal, by [Prop](#page-0-0) 2.28. Then

$$
k = \sum_{e \in \delta^+(X)} \varphi(e) - \sum_{e \in \delta^{-1}(X)} \varphi(e)
$$

Now, if any edge $e \in \delta^+(X)$ had $\varphi(e) \leq c(e) - 1$, then we could extend the augmenting path to the head *h* of *e*, hence deriving a contradiction $h \notin E$. Hence, $\varphi(e) \geq c(e)$, so $\varphi(e) = c(e)$. Similarly, we conclude that $\varphi(e) = 0$ for any $e \in \overline{\delta}(X)$. Thus,

$$
k = \sum_{e \in \delta^+(X)} c(e) - \sum_{e \in \delta^{-1}(X)} 0 = \sum_{e \in \delta^+(X)} c(e)
$$

Thus, minimizing over *X* yields $k \ge \sum_{e \in \delta^+(X)} c(e)$ as desired.

 \Box

X Ramsey's Theorem

Recall that *ν*(*G*) denotes the maximum size of a matching $M \subseteq E(G)$, where *M* is such that no two edges in *M* share an end (alternatively, no vertex is incident to two edges in *M*). Recall also that $\tau(G)$ denotes the minimum size of a vertex cover $X \subseteq V(G)$, where *X* is such that every edge has an end in *X*. These motivate the following definitions:

 $X \subseteq V(G)$ is *independent* if no edge of *G* has both ends in *X*. $\alpha(G)$ denotes the DEF 10.1 maximum size of an independent set in *G*.

 $L \subseteq E(G)$ is an *edge cover* of *G* if every vertex in *G* is an end of some edge in *L*. DEF 10.2 $\rho(G)$ denotes the minimum size of an edge cover in *G*. Remark that this is only well-

Notice how, in these elementary examples, $α(G) + τ(G) = |V(G)|$. This holds in generality:

For a graph *G* with $|V(G)| = n$, $\alpha(G) + \tau(G) = n$. prop 10.1

Remark that $X \subseteq V(G)$ is a vertex cover $\iff V(G) \setminus X$ is independent.

 $\alpha(G) + \tau(G) \geq n$: We need to find one independent set larger than $n - |X|$, where $|X| = \tau(G)$ is a vertex cover. Take $V(G) \setminus X$. Then $\alpha(G) \ge |V(G)| - |X| =$ $n - \tau(G)$.

 $\alpha(G) + \tau(G) \leq n$: We need to find one vertex cover smaller than $n - |X|$, where $|X| = \alpha(G)$ is an independent set. Take $V(G) \setminus X$. Then $\tau(G) \le |V(G)| - |X| =$ $n - \alpha(G)$. \Box

Let *G* admit an edge cover, with $|V(G)| = n$. Then $v(G) + \rho(G) = n$. PROP 10.2

 $\nu(G) + \rho(G) \le n$: Let *M* be a matching in *G* with $|M| = \nu(G)$. Let *L* be obtained PROOF. from *M* by adding an edge to every vertex not already covered by the ends of *M*. Then $\rho(G) \leq |L| = |M| + (n-2|M|) = n - |M|$, since each edge *M* covers 2 vertices (distinct from those covered by any other edge).

 $\nu(G) + \rho(G) \geq n$: Let *L* be an edge cover with $|L| = \rho(G)$. It suffices to consider *H* with $V(G) = V(H)$ and $E(H) = L$. For this, not that if *M* is a matching in *H*, then it is a matching in *G*.

Since *L* is minimal, every edge has a degree 1 end. Otherwise, we may

defined when every vertex is *incident to at least one edge*

proof.

delete such an edge and maintain covering. Hence, no cycles exist in *H*, so *H* is a forest. Let *M* consist of one edge per component of *H*. Then $\nu(G) \ge |M| = \text{comp}(H) = |V(H)| - |E(H)| = n - |L|.$ \Box

proof.

We prove the second part of this statement by induction on $s + t$. The base case, $R(s, 1) = R(1, t) = 1$, holds by observation. Suppose $R(s - 1, t)$ and $R(s, t-1)$ exist for $s, t \geq 2$. Let $N = R(s-1, t) + R(s, t-1)$, and *G* a graph with *N* vertices. We wish to show that *G* contains both a independent set of size *s or* a clique of size *t*. Let $v \in V(G)$.

Case 1: $deg(v) \ge R(s, t-1)$. Let *A* be the neighbors of *v*. Then $A \subseteq V(G)$ contains either an independent set of size *s* or a clique *X* of size *t* − 1. Then *X* ∪ *v* is a clique of size *t*.

*Case 2:*deg(*v*) $\geq R(s, t-1)$. Let *B* be the non-neighbors of *v*. Then $|B|$ = *N* − deg(*v*) − 1 ≥ *N* − *R*(*s, t* − 1) = *R*(*s* − 1*, t*). Hence, *B* ⊆ *V*(*G*) contains an independent set *X* of size *s* − 1 or a clique of size *t*. But then *X* ∪ *v* is an independent set of size *s*. \Box

$$
R(s, t) \leq {s + t - 2 \choose t - 1} \quad \forall s, t \geq 2
$$

We show by induction on $s + t$.

Base case: *R*(*s*, 1) and *R*(*t*, 1) = 1 = $\binom{s-1}{0}$ = $\binom{t-1}{t-1}$.

$$
R(s, t) \le R(s - 1, t) + R(s, t - 1)
$$

\n
$$
\le {s + t - 3 \choose t - 1} + {s + t - 3 \choose t - 2} = {s + t - 2 \choose t - 1}
$$

as desired.

From this, we observe that $R(s, s) \leq {2(s-1) \choose s-1} = 4^s$.

If *N*, *s* are positive integers such that $\binom{N}{s} 2^{1-\binom{N}{s}} < 1$, then there is a graph on *N* prop 10.9 vertices that has no independent set or clique of size *s*, i.e. *R*(*s, s*) *> N*.

Let *V* be a vertex set of size *N*. We will consider subgraphs of K_N with **PROOF**. *V*(*K*^{*N*}) = *V*. Let *F* ⊆ *E*(*K*^{*N*}). Denote by *G_{<i>F*} the graph with $V(G_F) = V$ and $E(G_F) = F$. Note that there are $2^{N \choose 2}$ graphs G_F . Let $X \subseteq V$ with $|X| = s$. Then *X* is independent set in exactly $2^{\binom{N}{2}-\binom{s}{2}}$ graphs G_F . Since there are $\binom{N}{s}$ ways *s* to construct *X*, there are at most $\binom{N}{s} 2^{\binom{N}{2} - \binom{s}{2}}$ graphs G_F with independent sets of size *s*. We conclude identically for cliques of size *s*.

If $2^{\binom{N}{2}} > 2\binom{N}{s}2^{\binom{N}{2}-\binom{s}{2}}$, then by Pigeonhole, there exists some graph G_F with neither an independent set or clique of size *s*. \Box

 \Box

prop 10.8

For $s \ge 2$, $R(s, s) \ge 2^{\frac{s}{2}}$

PROOF. By the previous proposition, it suffices to show that, for $N < 2^{\frac{s}{2}}$, we have $\binom{N}{s} 2^{1-\binom{N}{s}} < 1$. We expand a little:

$$
\binom{N}{s} 2^{1 - \binom{N}{s}} < \frac{N^2}{s!} 2^{1 - \binom{s}{2}} < \frac{2^{\frac{s^2}{2}}}{s!} 2^{1 - \frac{s(s-1)}{2}} = \frac{2^{\frac{s}{2} + 1}}{s!}
$$

Hence, it suffices to show $2^{\frac{s}{2}+1} < s!$. For $s = 3$, we have $2^5 < 3^6$. One can show by induction easily. Note that this is not true for *s* = 2, but we can manually see that $R(2, 2) = 2 \ge 2^{\frac{2}{2}} = 2$. \Box

DEF 10.5) be the minimum *N* such that in every coloring of edges in K_N by colors $\{1, ..., k\}$, one can find K_{s_i} with all edges colored by *i* for some *i*.

10.11 Ramsey Coloring Theorem

 $R_k(s_1, ..., s_k)$ exists for all *k* and choices of $s_1, ..., s_k$.

PROOF. We show by induction on *k*. For $k = 2$, we have $R_2(s_1, s_2) = R(s_1, s_2)$ (i.e. the ordinary Ramsey number), and thus the result holds by Ramsey's Theorem.

> We show that $R_k(s_1, ..., s_k) \leq R_{k-1}(R_2(s_1, s_2), s_3, ..., s_k) =: N$. We have that N exists by assumption. Let \star be a merged color with $s_{\star} = R_2(s_1, s_2)$. Then either K_{s_i} is completely covered with *i* in K_n (for $i \ge 3$), or $K_{R_2(s_1,s_2)}$ is colored completely with *⋆*. But this suffices. \Box

XI Vertex Coloring

by *i* is called the *color class* of *i*.

Let *G* be a graph. Then $\chi(G) \ge \omega(G)$ and $\chi(G) \ge \lceil \frac{|V(G)|}{\alpha(G)} \rceil$. Recall from <u>Def [10.1](#page-27-0)</u> prop 11.1 and Def [10.3](#page-28-0) these numbers.

The first result is almost automatic. Given a clique and a coloring, every PROOF. vertex must be colored with pairwise different colors (since, otherwise, we'd have two adjacent vertices colored the same). Hence, we must at least always use as many colors as the maximum size of a clique, i.e. $\chi(G) \ge \omega(G)$.

For the second result, let $\chi(G) = k$. It suffices to show that $k \geq \frac{|V(G)|}{\chi(G)}$ $\frac{\alpha(G)}{\alpha(G)}$, i.e. $k\alpha(G) \geq |V(G)|$. Note that every color class is independent (if an internal edge existed, we'd find two adjacent vertices of the same color). Hence, if V_1 , ..., V_k are the color classes of *G*, we have

$$
|V(G)| = |V_1| + ... + |V_k| \le k\alpha(G)
$$

Greedy Coloring Algorithm definition of the 11.4 control of th

| Input

A graph *G* and an ordering of vertices $(v_1, ..., v_n)$, $v_i \in V(G)$.

| Output

A *k*-coloring $c: V(G) \rightarrow \{1, ..., k\}$

$i \rightarrow i + 1$

Let $c(v_i)$ be the minimal positive integer not already assigned to one of its neighbors among $(v_1, ..., v_{i-1})$.

Note that the ordering we provide is essential. Consider the following 2 and 3 colorings that result from different orderings:

1 2 1 2 1 2 3 1 or $\overline{}$ v_1 v_2 v_3 v_4 v_1 v_3 v_4 v_2

A graph *G* is *k*-degenerate if every subgraph of *G* contains a vertex of degree $\leq k$ DEF 11.5 (measured in the subgraph).

For example, *G* is 0-degenerate \iff it has no edges \iff it is 1-colorable. *G* is 1-degenerate \iff it is a forest (\implies it is 2-colorable).

Let *G* be *k*-degenerate. Then $\chi(G) \leq k + 1$. PROP 11.2

proof.

 \Box

It suffices to provide an ordering $(v_1, ..., v_n)$ such that v_i has at most *k* neighbors among $v, ..., v_{i-1}$. Then, applying the greedy algorithm above, we'll always use $k + 1$ colors. Hence, $\chi(G) \leq k + 1$.

We'll construct this ordering backwards. Suppose *vn, ..., vn*−*i*+1 satisfy our conditions. Consider $G' = G \setminus \{v_n, ..., v_{n-i+1}\}\)$. As *G* is *k*-degenerate, *G*' has a vertex of degree ≤ *k*. Choose this vertex to be v_{n-i} . Then, v_{n-i} has at most *k* neighbors in $\{v_1, ..., v_{n-i-1}\}$, as desired. \Box

DEF 11.6 **Let** $\Delta(G)$ denote the maximum degree of a vertex in *G*.

Observe that *G* is ∆(*G*)-degenerate. Hence, we get

PROP 11.3 $\chi(G) \leq \Delta(G) + 1$

11.4 Brooks

Let *G* be connected, non-null, and not either a complete graph or an odd cycle. Then

 $\chi(G) \leq \Delta(G)$

conjecture (reed)

 $\chi(G) \leq \left[\frac{\omega(G) + (\Delta(G) + 1)}{2}\right]$ 2 |
|

PROOF IDEA Equivalently, we show, for any integer $k \ge 1$, that if *G* is connected with $\Delta(G)$ ≤ *k*, then *G* admits a *k*-coloring unless *G* = K_{k+1} or *k* = 2 and *G* is an odd cycle.

> *Case 0:* $k = 1$, 2. For $k = 1$, we have the connected non-null graphs of maximal degree 1, i.e. K_2 and a singleton vertex. The former case is handled by K_{k+1} , and the latter can clearly by 1-colored. For $k = 2$, if *G* is bipartite, then it is 2-colorable, as desired. If *G* is not bipartite, then it contains an odd cycle by [Thm](#page-14-1) 6.2. By connectedness, and the fact that the maximal degree of *G* is 2, we conclude that *G* itself is an odd cycle.

> We proceed by induction on $|V(G)|$, assuming, by the case above, that $k \geq 3$ (otherwise arbitrary). If $|V(G)| = 0$, then we run into non-nullity case, so Brooks holds. Hence, we continue with a strong induction hypothesis.

> *Case 1: G is not* 2*-connected.* Then \exists a separation (A, B) of *G* such that $|A|$, $|B|$ < $|V(G)|$ with $|A ∩ B| = 1$ by Menger. Recall the notation $G[X]$ for $X \subseteq V(G)$, which is the graph induced by the vertices *X* and all its internal edges. We apply our induction hypothesis to *G*[*A*] and *G*[*B*], i.e. ∃*k*-colorings $c_A : A \rightarrow S$ and $c_B : B \rightarrow S$ with $|S| = k$.

 \Box

Almost: neither *G*[*A*] nor *G*[*B*] are K_{k+1} . WLOG suppose *A* is. Then $\exists v \in$ *A* ∩ *B* with *k* neighbors in *A*. But *v* must have a neighbor in *B* to maintain connectedness. Then deg(*v*) ≤ *k* + 1, contradicting ∆(*G*) ≤ *k*. By permuting colors as needed, we can ensure that c_A and c_B agree on $A \cap B$. This hence creates a *k* coloring

$$
c(u) = \begin{cases} c_A(u) : u \in A \\ c_B(u) : u \in B \end{cases}
$$

Case 2: G is 2*-connected, but not* 3*-connected.*

Just as above, but a little more careful.

Case 3: G is 3*-connected.*

Constructive *k*-coloring using greedy algorithm.

XII Edge Coloring

A function $c: E(G) \to S$, with $|S| = k$, is called a *k-edge coloring* if $c(e) \neq e(f)$ for DEF 12.1 any $e, f \in E(G)$ which share an end.

The *edge chromatic number χ* ′ (*G*) is the minimum *k* such that *G* admits a *k*-edge coloring.

Consider the following edge coloring of *K*4:

This shows that $\chi'(K_4) \leq 3$. But we cannot color with 2 colors, so $\chi'(K_4) = 3$.

Let *G* be a graph with at least one edge. Then $\Delta(G) \leq \chi'(G) \leq 2\Delta(G) - 1$. PROP 12.1

Recall that *L*(*G*) has vertex set *E*(*G*), and two edges of *G* are adjacent in *L*(*G*) if they share an end. Hence, a *k*-edge coloring of *G* is a *k*-coloring of *L*(*G*) (and vice versa). In particular, $\chi'(G) = \chi(L(G))$.

 $\text{Since } \omega(G) \leq \chi(G) \leq \Delta(G) + 1, \, \omega(L(G)) \leq \chi'(G) = \chi(L(G)) \leq \Delta(L(G)) + 1.$

What does the maximal clique look like in *L*(*G*)? This is the maximal number of edges incident to a single vertex. Hence, ∆(*G*) ≤ *ω*(*L*(*G*)). What is vertex degree in *L*(*G*)? We observe that $deg_{L(G)}(e) = deg(u) + deg(v) - 2$, where

proof.

DISCRETE MATHEMATICS 32 In particular, $\Delta(G) = \omega(L(G))$ unless $G = K_3$

 $e = uv$. Hence, $\Delta(L(G)) \leq 2\Delta(G) - 2$. We re-write the inequality above, then:

$$
\Delta(G) \le \chi'(G) \le 2\Delta(G) - 1 \quad \Box
$$

Note here that $2 = \Delta(G) < \chi'(G) = 3$ for odd cycles. However, this is an uncommon exception. We can show $\chi'(G) = \Delta(G)$ for bipartite *G*, and $\chi'(G) \leq 3\left\lceil \frac{\Delta(G)}{2} \right\rceil$ $\left(\frac{G}{2}\right)$ in generality. Recall that *G* is *k*-regular if $deg(v) = k$ for any $v \in V(G)$. (cf. [Def](#page-17-0) [7.9\)](#page-17-0)

prop 12.2 Let *k* ≥ 1 and *G* be a graph with ∆(*G*) ≤ *k*. Then there exists a *k*-regular graph *H* with $G \subseteq H$. Moreover, if *G* is bipartite, then so is *H*.

Consider an example for an *almost* 3-regular graph as inspiration for a proof:

proof. We will show by induction on $k - L$ such that, if $L \leq deg(v) \leq k \ \forall v \in V(G)$, then *G* is a subgraph of a *k*-regular *H*.

If $k = L$, then we have a *k*-regular $H = G$.

Let *G*′ be an isomorphic copy of *G* with *V* (*G*′) disjoint from *V* (*G*). Denote the copy of *v* as *v'*. Let *G''* be obtained from $G \cup G'$ by adding an edge vv' for every *v* with $deg_G(v) = deg_{G'}(v') < k$. Then $L + 1 \le deg_{G''}(u) \le k$ for every $u \in V(G'')$. So, by induction hypothesis, G'' is a subgraph of a *k*-regular graph *H*. Hence, $G \subseteq G'' \subseteq H$.

Note that, if *G* is bipartite with bipartition (A, B) (with (A', B') corresponding to *G*'), then *G*" is bipartite with a bipartition $(A \cup B', B \cup A')$. Induction then proves the final statement. \Box

12.3 König

Let *G* be bipartite. Then $\chi'(G) = \Delta(G)$

PROOF. We've shown that $\chi'(G) \geq \Delta(G)$ by [Prop](#page-33-1) 12.1. Hence, it suffices to show that $\chi'(G) \leq \Delta(G)$. But, by [Prop](#page-34-0) 12.2, we only need to $\chi'(G) \leq k$ for every *k*-regular, bipartite *G*. We'll show this by induction on *k*.

For $k = 0$, this is trivial.

Let $k \geq 1$. We know that *k*-regular bipartite *G* has a perfect matching, say *M*. Then $G \setminus M$ is $(k-1)$ -regular. By induction hypothesis, $\chi'(G \setminus M) \leq k-1$. We use another color *k* to color *M*, and get a *k*-edge coloring of *G*. \Box

To show $\chi'(G) \leq 3 \left[\frac{\Delta(G)}{2} \right]$ $\left(\frac{G}{2}\right)$, we can show that $\Delta(G) \leq 2k \implies \chi'(G) \leq 3k$. Even easier, we show that if *G* is (2*k*)-regular, then $\chi'(G) \leq 3k$.

 $F \subseteq E(G)$ is called a 2-factor if every vertex of *G* is incident to exactly 2 edges in *F*. DEF 12.2 Similarly, *F* is *1-factor* if it is a perfect matching.

Let *G* be a (2*k*)-regular graph. Then *E*(*G*) can be partitioned into *k* 2-factors. prop 12.4

If $k = 1$, then the lemma is trivial. As all degrees of *G* are even, there exists a partition of *E*(*G*) into edge sets of cycles. Direct all edges of *G* so that every cycle in the partition is oriented in one direction of traversal. Then every vertex is a head of exactly *k* edges and a tail of exactly *k* edges.

Let *H* be a bipartite graph with bipartition (*A, B*), where *A* contains a copy *v*₁ of *v* ∀*v* ∈ *V*(*G*), and, similarly, *B* contains a copy *v*₂ of *v* ∀*v* ∈ *V*(*G*). For every edge $uv \in E(G)$ directed from $u \to v$, add an edge u_1v_2 to *H*.

Then *H* is a *k*-regular bipartite graph. *E*(*H*) can be partitioned into *k* perfect matchings, *M*1*, ..., M^k* .

The matchings *Mⁱ* correspond to the desired 2-factors in *G*.

12.5 Shannon

$$
\chi'(G) \le 3 \left[\frac{\Delta(G)}{2} \right]
$$

|
|

Let $k = \left[\frac{\Delta(G)}{2}\right]$. Then $\Delta(G) \leq 2k$. By Prop 12.2, we may assume that G is PROOF. $\left[\frac{G}{2}\right]$. Then $\Delta(G) \leq 2k$. By <u>[Prop](#page-34-0) 12.2</u>, we may assume that *G* is 2*k*-regular. Then by [Prop](#page-35-1) 12.4, *E*(*G*) may be partitioned into *k* 2-factors, *F*1*, ..., F^k* . Each *Fⁱ* is an edge set of a union of cycles, so it can be colored using 3 colors, which gives a $(3k)$ -edge coloring of *G*. Hence $\chi'(G) \leq 3k$. \Box

12.6 Vizing

 $\chi'(G) \leq \Delta(G) + 1$

We won't prove this in class (too long and technical). In fact, *χ* ′ (*G*) is *either* ∆(*G*) or $\Delta(G) + 1$.

 \Box

proof.

XIII Graph Minors & Hadwiger's

H is a subgraph of *G* if *H* can be obtained from *G* be repeatedly deleting vertices and/or edges. Hence

- 1. Every graph is a subgraph of itself.
- 2. If *J* is a subgraph of *H*, and *H* is a subgraph of *G*, then *J* is a subgraph of *G*.

DEF 13.1 **Example 13.1** Let $e \in E(G)$ with ends u, v . A graph G' obtained from G by *contracting* e is produced by deleting *u*, *v*, and replacing them by *w*, such that $N(w) = N(u) \cup N(v)$ in *G*′ .

def 13.2 *H* is a *minor* of *G* if *H* can be obtained from *G* by deleting vertices and/or edges, and/or contracting edges.

- 1. Every graph is a minor of itself.
- 2. If *J* is a minor of *H*, and *H* is a minor of *G*, then *J* is a minor of *G*.

If *G* has no *K*2, then certainty *G* is edgeless (which is the same as when *G* has no *K*₂ subgraph). These are \iff statements. This implies that *G* has a 1-coloring.

If *G* has no *K*³ minor, then *G* has no cycles. Otherwise, we may isolate a cycle, and contract each edge inductively. In fact, *G* has no K_3 minor \iff it has no cycles. This implies that *G* is bipartite.

$$
G = \left(\begin{matrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{matrix}\right) \rightarrow \left(\begin{matrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{matrix}\right) \rightarrow \left(\begin{matrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{matrix}\right) = K_4 = H
$$

(hadwinger)

conjecture For every positive integer *t*, if *G* has no K_{t+1} minor, then $\chi(G) \leq t$.

For $t = 1, 2$, this conjecture holds easily. For $t = 3$, i.e. no K_4 minor $\implies \chi(G) \leq 3$, it is provable and not too difficult. For $t = 4$, i.e. no $K_5 \implies \chi(G) \leq 4$, we would show the famous Four Color Theorem, as planar graphs have no K_5 minor. This theorem was proven by computer (Appel, Haken), and is 10,000 pages in length. The *t* = 5 case was proven in 1993 *assuming t* = 4 holds (Robertson, Seymour, Thomas), and is not computer assisted, but is 80 pages of human reasoning. $t \ge 6$ is open.

def 13.3 A *subdivision of a graph H* is obtained from *H* by replacing edges of *H* by internally vertex disjoint paths with the same ends as the original edges.

Observe that *H* is a minor of any subdivision of *H*, by repeated contraction of new edges. If *G* contains a subdivision of *H* as a subgraph, then *G* contains *H* as a minor. Hence, for the *t* = 3 case of Hadwiger's, we may prove that no *K*₄ subdivision $\implies \chi(G) \leq 3$. Even simpler, we may prove instead that *G* is 2-degenerate, by [Prop](#page-31-0) 11.2.

Let *G* be a 3-connected graph. Then *G* contains a subdivision of K_4 as a subgraph. prop 13.1 Hence, *G* contains a *K*⁴ minor.

Let $s, t \in V(G)$ be distinct vertices. Then, there exists vertex disjoint paths PROOF. *P*, *Q*, & *R* from $s \rightarrow t$. (cf [Thm](#page-21-0) 8.5). Let *L* be the shortest path in $G - s - t$ with ends on two different paths among *P*, *Q*, & *R*. Such a choice is possible: *G* − *s* − *t* is connected, since *G* is 3-connected, and at least two of the paths *P*, *Q*, *R* contain internal vertices.

Then *L* is disjoint from *P*, *Q*, & *R* except for its ends. Suppose $p \in P$, $r \in R$ are ends of *L*, and suppose for a contradiction that *L* has an internal vertex *q* ∈ (*P* ∪ *Q* ∪*R*)− {*s, t*}. If *q* < *V* (*R*), then a subpath of *L* from *q* → *r* contradicts the choice of *L* as minimal. Otherwise, the subpath of *L* from $q \rightarrow p$ contradicts it.

Hence, $P \cup Q \cup R \cup L$ is a subdivision of K_4 in *G*. \Box

Let *G* be a graph with no K_4 minor. Let *X* be a clique in *G* s.t. $|X| \le 2$ and prop 13.2 *X* ≠ *V*(*G*). Then there exists *v* ∈ *V*(*G*) − *X* such that deg(*v*) ≤ 2

We proceed by induction on $|V(G)|$. For $|V(G)| \leq 3$, every $v \in V(G)$ is s.t PROOF. $deg(V) \leq 2$.

By [Prop](#page-37-0) 13.1, *G* is not 3-connected. Hence, there exists a separation (*A, B*) of *G* s.t. $A, B \neq V(G)$ of order ≤ 2 . Choose such a separation with $|A \cap B|$ minimum. WLOG we assume $X \subseteq A$.

Let *Y* = *A* ∩ *B* and let *G*′ be obtained from *G*[*B*] by adding an edge between two vertices of *Y* if needed. Then, by induction hypothesis on *G*′ , there exists *v* ∈ *V*(*G*′)−*Y* = *B*−*A* ⊇ *V*(*G*)−*X* s.t. deg_{*G*}(*v*) ≤ 2, but deg_{*G*}(*v*) = deg_{*G*′}(*v*) ≤ 2, so *v* is as needed.

Note that *G*′ is a minor of *G*, and so has no *K*⁴ minor, as *G*[*A*] contains a path *P* with the same ends as the edge we added (if we did), by minimality of $|A \cap B|$. We could then contract *P*. \Box

13.3 Hadwiger's Conjecture for $t = 3$

Let *G* be a graph with no K_4 minor. Then $\chi(G) \leq 3$

proof. By [Thm](#page-0-0) 11.2, it is enough to show that *G* is 2-degenerate. That is, every non-null subgraph *H* of *G* contains a vertex *v* of degree \leq 2. But *H* has no K_4 minor (since *G* doesn't), so it has such a vertex by [Prop](#page-37-1) 13.2. \Box

XIV Planar Graphs

def 14.1 A *planar drawing* of a graph *G* in the plane is a representation of *G* such that its vertices are distinct points in the plane and its edges are curves joining its ends, such that no two curves intersect eachother. The picture on the left is not a drawing of *K*4, while the one on the right is.

DEF 14.2 A graph *G* is *planar* if it admits a planar drawing.

We may also be interested in representing graphs on *locally* planar objects, like a torus. K_5 is not planar in \mathbb{R}^2 , but one can draw it on a torus, like so:

A drawing of a graph separates the plane into *regions*, where two points (not in the drawing) are in the same region if they can be joined by a curve disjoint from the drawing.

A *curve* from $p \to q$ for $p, q \in \mathbb{R}^2$ is a continuous map $\varphi : [0, 1] \to \mathbb{R}^2$ such that definition $\varphi(0) = p$ and $\varphi(1) = q$. A curve is *simple* if φ is injective on [0, 1] and *closed* if $\varphi(0) = \varphi(1)$.

14.1 Jordan Curve Theorem

Every simple closed separates the plane into two regions.

Deleting an edge decreases the number of regions by one if the regions on the two sides of the edge are different. It remains the same if the regions are the same.

Let *G* be a graph drawn in the plane observation 14.1

- 1. If $e \in E(G)$ belong to a cycle, then the regions on two sides of *e* are different.
- 2. If one of the ends of *e* is a leaf, then the regions on both sides of *e* are the same.

Let $Reg(G)$ denote the number of regions in the drawing of a planar graph G .. DEF 14.4

14.2 Euler's Formula is well-defined

Let *G* be a non-null planar graph. Then

 $|V(G)| - |E(G)| + \text{Reg}(G) = 1 + \text{comp}(G)$

In particular, if *G* is connected and non-null, then $|V(G)| - |E(G)| + \text{Reg}(G) = 2$. Often, one write $V - E + F = 2$.

We'll show by induction on $|E(G)|$. If $|E(G)| = 0$, then $|V(G)| + \text{Reg}(G) = \text{PROOF}}$. $|V(G)| + 1$. But $|V(G)| = \text{comp}(G)$ if *G* is edgeless. Hence, let $|E(G)| \geq 1$.

Case 1: There exists $e \in E(G)$ that belongs to a cycle. Then by the observation above, Reg(*G* \ *e*) = Reg(*G*) − 1, while $|V(G \setminus e)| = |V(G)|$ and $|E(G \setminus e)| =$

A priori, we don't know if this

(=⇒) If *H* is a minor of *G*, and *G* is planar, then *H* is planar. Clearly, deleting edges or vertices will leave *G* planar. Contracting edges is more complicated, but see the proof by drawing: Hence, if *G* is planar, then it contains no K_5 or $K_{3,3}$ minor.

Let *G* be a planar graph with $|V(G)| \ge 3$. Then $\sum_{v \in V(G)} (6 - \deg(v)) \ge 12$. In prop 14.5 particular, every non-null planar graph contains a vertex *v* with $deg(v) \leq 5$.

By Thm 14.4,
\n
$$
\sum_{v \in V(G)} \deg(v) = 2|E(G)| \le 6|V(G)| - 12 \implies \sum_{v \in V(G)} (6 - \deg(v)) \ge 12
$$

Every planar graph is 5-degenerate, and therefore 6-colorable. **prop** 14.6

[Prop](#page-41-1) 14.5

XV Kuratowski's Theorem

Our goal is to show that every non-planar graph *G* has a K_5 or $K_{3,3}$ minor. A proof outline is as follows:

We'll show by induction on $|V(G)|$. Let *G'* be obtained from *G* by contracting PROOF OUTLINE. an edge. If G' is not planar, then we are done (it will contain K_5 or $K_{3,3}$ as a minor by induction hypothesis). Hence, assume *G*′ is planar. Let *w* be the vertex which was contracted from $u, v \in V(G)$. We pop out into the following lemma for help: \Box

Let *G* be a 2-connected graph drawn in the plane. Then the boundary of every prop 15.1 region in the drawing is a cycle.

Here's the idea: by "walking along" the boundary of a region *R*, we find a PROOF. cycle *C* in *G* such that *C* belongs to the boundary of *R*. All vertices of *C*, except possible one $v \in V(C)$, have no neighbors in the interior of the region *R*' bounded by *C*. If $R' \neq R$, then a subgraph *G*' of *G* is drawn strictly inside *R*'. Deleting *v* then disconnects *G*' from $C \setminus v \implies \frac{1}{2}$. \Box

Let *C* be a cycle and let *X*, $Y \subseteq C$. Then one of the following holds: prop 15.2

proof.

 \Box

 \Box

- 1. There exist distinct vertices $z_1, z_2 \in V(C)$ and two paths $P, Q \subseteq C$ with ends *z*₁*, z*₂ such that *P* ∪ *Q* = *C* and *X* ⊆ *V*(*P*)*, Y* ⊆ *V*(*Q*).
- 2. There exist distinct $x_1, y_1, x_2, y_2 \in V(C)$ occurring in this order, where $x_1, x_2 \in X, y_1, y_2 \in Y$.

3. $X = Y$ and $|X| = |Y| = 3$.

PROOF. *Case 1:* $X = Y$. If $|X| = |Y| \le 2$, then (1) holds, since we can just have P , Q with ends on *X* and *Y*. If $|X| = |Y| = 3$, then (3) holds. If $|X| = |Y| \ge 4$, then outcome two holds by choosing two from each *X* and *Y* .

> *Case 2:* WLOG take $x_1 \in X - Y$. Let y_1, y_2 be the closest vertices of *Y* to x_1 (in either direction along *C*). Let *Q* be a path from y_1 to y_2 not containing *x*₁. Then *Y* ⊆ *V*(*Q*). If *X* ∩ *V*(*Q*) ⊆ {*y*₁*, y*₂}, then (1) holds. Otherwise, $\exists x_2 \in (X \cap V(Q)) \setminus \{y_1, y_2\}$, so (2) holds.

15.3 Kuratowski

A graph *G* is planar if and only if it contains neither a subdivision of K_5 or *K*3*,*³ as a subgraph.

PROOF. By induction on $|V(G)| + |E(G)|$. One only needs to prove the (\Leftarrow) direction, since we did the converse at the end of Chapter 14.

> Let *G*′ be obtained from *G* be contracting an edge *e* with ends *u* and *v*. If *G*′ is not planar, then the theorem follows by induction hypothesis. Hence, assume *G*′ is planar. Let *w* be the vertex which results from contracting *e*. Let $G'' = G' \setminus w = G \setminus u \setminus v$.

> *Case 1*: *G*′′ is 2−connected. Then by [Prop](#page-41-2) 15.1, the boundary of the region of *G*′′ that contained *w* is a cycle *C*.

> Let *X* and *Y* be the sets of neighbors of *u* and *v*, respectively, in *G*′′. Then *X*, *Y* ⊆ *V*(*G*). Then, by [Prop](#page-41-3) 15.2, we consider a few outcomes: \Box